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Time reversal and exceptional points
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Abstract. Eigenvectors of decaying quantum systems are studied at exceptional points of the Hamiltonian.
Special attention is paid to the properties of the system under time reversal symmetry breaking. At the
exceptional point the chiral character of the system — found for time reversal symmetry — generically
persists. It is, however, no longer circular but rather elliptic.
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Quantum chaos; semiclassical methods

In a system described by a non-Hermitian HamiltonianH ,
a surprising phenomenon can occur: the coalescence of
two eigenmodes. This means that two eigenvalues merge
such that there is only one eigenvector. As a consequence,
H cannot be diagonalized by a similarity transforma-
tion. Considering H to depend on some parameter λ, the
value λc, where this happens, is called an exceptional point
(EP) [1]. It is well-known that Hermitian operators cannot
have any EPs: at a degeneracy of two of their eigenvalues,
the space of eigenvectors is two-dimensional.

In the vicinity of an EP, the eigenvalues and eigenvec-
tors show branch point singularities [2–5] as functions of λ.
This contrasts with a two-fold degeneracy in a hermitian
matrix, where no singularity but rather a diabolic point [6]
occurs. EPs have been observed in laser induced ioniza-
tion of atoms [7], in acoustical systems [8], microwave
cavities [9,10], in optical properties of certain absorptive
media [11–13], and in “crystals of light” [14]. Models for
Stark resonances in atomic physics have been analysed in
terms of EPs and their connection to diabolic points dis-
cussed [15]. The broad variety of physical systems showing
EPs indicates that their occurrence is generic.

The observation of EPs is possible in decaying quan-
tum systems. So far only complex symmetric Hamiltoni-
ans have been considered. Such “effective” Hamiltonians
are used to model decaying or resonant systems when in-
variance under time reversal prevails. They are obtained
by eliminating open decay channels from explicit consid-
eration. Therefore, the possibility for the system to decay
is not at variance with time reversal symmetry.

For complex symmetric H , a recent theoretical pa-
per [16] has found the eigenfunction |ψEP〉 at the EP to
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be of the form

|ψEP〉 =

(
±i
1

)
. (1)

The phase difference ±i between the components of
the state vector is independent of an arbitrary two-
dimensional orthogonal transformation [16]; in fact, the
|ψEP〉 are eigenstates of an orthogonal transformation and
are therefore independent of a particular choice of the ba-
sis. The phase i has been confirmed experimentally [17].

In the present note, we again address the eigenfunction
at the EP — for a situation, where time reversal symme-
try is broken. This does not necessarily mean that it is
broken on a fundamental level as it is in the system of the
neutral K-mesons. An external magnetic field applied to
a moving charge provides time reversal symmetry break-
ing. Similarly, one can introduce magnetic elements into
microwave cavities that allow only one direction for a trav-
eling wave [18].

In the vicinity of an EP, where two (and only two)
eigenvalues merge, an n-dimensional system can locally
be represented by a two-state system [16]. Therefore we
confine ourselves to two-dimensional H in the sequel.

Let H be the sum

H = H0 + λH1 (2)

of two Hermitian operators H0, H1 with H1 multiplied by
a complex strength parameter λ. In order that there be
exceptional points λc, the operators H0 and H1 must not
commute. If they do,H can be diagonalized for every com-
plex λ. We write

H0 = U0εU
†
0 and H1 = U1ωU

†
1 , (3)
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where

ε =

(
ε1 0

0 ε2

)
and ω =

(
ω1 0

0 ω2

)
, (4)

and U0, U1 are unitary matrices. Throughout the present
paper we assume that ε and ω are different from a mul-
tiple of the unit matrix. Then H0, H1 do not commute if
U0, U1 are different from each other.

The Uk can be parameterized by two angles φ and
τ such that

Uk = U(φk, τk) where k = 0, 1 (5)

and

U(φ, τ) =

(
cosφ − sinφ exp(iτ)

sinφ exp(−iτ) cosφ

)
. (6)

A general unitary transformation Ug in two dimensions
actually has four parameters. It can be represented as

Ug = U

(
exp(iγ1) 0

0 exp(iγ2)

)
. (7)

Since Hk is independent of the phases γ1, γ2, we may set
them equal to zero. Thus, equation (6) is the most general
unitary transformation in the context of equation (3).

The complex strength parameter λ allows for the sys-
tem to decay. Since we assume that the time reversal op-
erator T equals the complex conjugation K, the Hamil-
tonian H is time reversal symmetry breaking if τ0 �= 0 or
τ1 �= 0.

Let us discuss the consequences of this model in two
steps: first, the simplification τ1 = τ2 is introduced, and
second, the general case is discussed.

A special case of time reversal symmetry breaking. We
assume that τ0 and τ1 equal each other, i.e.

τ = τ0 = τ1. (8)

At the EPs, the eigenvectors are

|ψ±
EP〉 ∝

(
±ieiτ

1

)
, (9)

respectively. One recognizes this by using the time reversal
symmetric result (1) together with the observation that
the present H can be written in the form

H = z(τ)
(
U(φ0, 0)εU †(φ0, 0)

+λU(φ1, 0)ωU †(φ1, 0)
)
z†(τ), (10)

where z is the matrix

z(τ) =

(
exp(iτ/2) 0

0 exp(−iτ/2)

)
. (11)

The result (9) differs from equation (10) of [16] by the
phase τ . For τ = 0, one retrieves the time reversal invari-
ant situation described there.

The left hand eigenvectors 〈ψ̃±
EP| at the EPs are

〈ψ̃±
EP| = (±ie−iτ , 1). (12)

This differs from equation (5) of [16] in that |ψ̃±
EP〉 is not

the complex conjugate of the right hand eigenvector |ψ±
EP〉.

Note, however, that relation (9) of [16] persists: the inner
product of the left and right hand eigenvectors vanishes,
viz. 〈

ψ̃±
EP|ψ

±
EP

〉
= 0. (13)

Therefore the biorthogonal normalization is impossible at
the EP.

The present case covers the even more special situation
where φ0 = 0, whence

H0 = ε. (14)

The evaluation of this case provides the basis for the later
evaluation of the general case. If (14) holds, the eigenval-
ues are

E1,2 =
1
2

(
ε1 + ε2 + λ(ω1 + ω2)

)
±R, (15)

where

R =
1
2
{
(ε1 − ε2)2 + λ2(ω1 − ω2)2

+2λ(ε1 − ε2)(ω1 − ω2) cos 2φ1}−
1
2 . (16)

The two levels coalesce at R = 0. This yields two EPs at

λ±c = − ε1 − ε2
ω1 − ω2

e±2iφ1 . (17)

Note that by our assumptions ε1 �= ε2, ω1 �= ω2 and
φ1 �= 0.

For a given τ , the transformations U(φ, τ) with −π ≤
φ < π form a subgroup of the unitary matrices. The eigen-
vectors (9) are invariant under the transformations of this
group because |ψ±

EP〉 is eigenvector of every element of the
group, i.e.

U(φ, τ)|ψ±
EP〉 = exp(±iφ)|ψ±

EP〉. (18)

This parallels the result stated above and in equation [16]
in that the vector given in equation (1) is an eigenvector of
all orthogonal transformations. In the more general cases
of time reversal symmetry breaking there is no longer such
symmetry.

The general case of time reversal symmetry breaking.
We assume that both, φ0 and φ1, are different from zero
and τ0 �= τ1.

One can, of course, transform to the eigenbasis
of H0. Then H takes the diagonal form used above.
However, T is no longer equal to K, it rather is
T = U †(φ0, τ0)KU(φ0, τ0). By this change of the basis, we
obtain the general form of the eigenfunction at the EP.

The diagonalisation of H0 brings H into the form

H̃ = ε+ λU †(φ0, τ0)H1U(φ0, τ0)

= ε+ λU †(φ0, τ0)U(φ1, τ1)ωU †(φ1, τ1)U(φ0, τ0). (19)
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According to the above discussion, the eigenfunction at
the EP is given by

|ψ±
EP〉H̃ ∝

(
±ieiξ

1

)
, (20)

where the phase ξ and the position of the EP are functions
of φ0, τ0, φ1, τ1. The explicit dependence is deferred to the
appendix. As a result, the state vector of the Hamiltonian
H at the EP is given by

|ψ±
EP〉H ∝ U(φ0, τ0)

(
±ieiξ

1

)
(21)

which may be rewritten as

|ψ±
EP〉H ∝

(
±ie−iξ

(
e2iξ cos2 φ0 + e2iτ0 sin2 φ0

)
1 ± sin(2φ0) sin(τ0 − ξ)

)
. (22)

Here, the lower component has been chosen real. Note
that the scalar product of the left hand and right hand
eigenvector again vanishes as in equation (13).

We discuss this result. (i) For φ0 = 0, correspond-
ing to diagonal H0, the form of equation (9) is retrieved
from (22). (ii) For τ0 = 0, corresponding to time rever-
sal invariant H0, the upper component of (22) simplifies
to ±i cos(ξ) ∓ cos(2φ0) sin ξ. Even in this case, the ratio
between the upper and lower component is not a phase
factor but can assume any value in the complex plane. Of
course, large values of the ratio correspond to small values
of the lower component which can in fact vanish. (iii) If
τ0 = τ1 while maintaining φ0 �= φ1, equation (22) leads
back to equation (9).

In conclusion: the “universal” phase of π/2 in the
eigenvector at an EP is no longer universal if time reversal
symmetry is broken. The phase as well as the relative am-
plitude in the eigenvector at the EP can be manipulated
in an experiment that allows to control the violation of
this symmetry.

If — in analogy with wave optics [13] and as was done
in [17] — one associates a circularly polarized wave with
the eigenvector (1), time reversal symmetry breaking leads
to the elliptically polarized wave (22). An elliptical wave
can be generated in two ways: the phase of the upper com-
ponent in (22) is different from ±π/2 or the amplitude
ratio is not unity. The limit of a linearly polarized wave is
obtained when the upper component is real. If this hap-
pens, the chiral character of the wave function at an EP
is lost. We emphasize, however, that even this dramatic
effect of time reversal symmetry breaking upon the wave
function does not alter the fact that only one mode can
occur at the EP. Time reversal symmetry breaking sim-
ply changes the amplitude ratio such that it may assume
any complex value. This includes in particular the spe-
cial cases where either the upper or the lower component
in (22) vanishes.

We believe that these results can be verified in future
experiments with quantum dots in a magnetic field and
with microwave cavities containing suitable magnetic ele-
ments [18].
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Appendix A: The phase ξ

The product

U †
0U1 = U †(φ0, τ0)U(φ1, τ1) (A.1)

is equal to

U †
0U1 =


cosφ0 cosφ1 cosφ1 sinφ0e
iτ0

+ sinφ0 sinφ1e
i(τ0−τ1) − cosφ0 sinφ1e

iτ1

− cosφ1 sinφ0e
−iτ0 cosφ0 cosφ1

+ cosφ0 sinφ1e
−iτ1 + sinφ0 sinφ1e

−i(τ0−τ1)


 .

(A.2)

We introduce the phase of the (1,1)-element, viz.

γ = arg
(
cosφ0 cosφ1 + sinφ0 sinφ1e

i(τ0−τ1)
)
, (A.3)

and write equation (A.1) in the form

U †
0U1 =

(
cosβ − sinβeiξ

sinβe−iξ cosβ

)
z(2γ). (A.4)

Here, z is the matrix defined in equation (11), and β is
given by

cosβ =
(
cos2 φ0 cos2 φ1 + sin2 φ0 sin2 φ1

+2 cosφ0 cosφ1 sinφ0 sinφ1 cos(τ0 − τ1))
1/2 (A.5)

and ξ by

ξ = arg
(
cosφ1 sinφ0e

iτ0 − cosφ0 sinφ1e
iτ1
)

+ γ. (A.6)

The exceptional point occurs at

λEP = − ε1 − ε2
ω1 − ω2

e±2iβ . (A.7)
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